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ABST~.:ACT

The flutter of an infinitely long r.>late in a high suversonic

airstream is examined theoretically usinr~ '70n I:arman's nonlinear

~late deflection equation and piston theory aerodyna~mics. By numeri­

cal methods the flutter is found to take tbe form of a traveling v7ave.

To a close approximation the flutter motion can be described analytica.1ly.

The case for flutter of loaded panels is also explored and analytic

formulae developed. Solution in terms of more than one traveline v7ave

is found to af.:ree closely uith the single r,lave behavior.
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I • H1'l''R.ODUCTlfY ,

Considered herein is the res;:onse of an infinitely Ion?; plate

exposed to a length ~jise a:i.rfloH and subjected to an initial t1istur­

b ance. )Lotivation for the analysis came from Douell's [6] dis covery

that the flutter of plates vittl high length to 1;.ridth ratios "Tas dominated

by modes too high to he conven:l.ently exard.'1cd hy finite plate approaches.

The analysis presented here ~"ould he valie. for plates ~Jit;l lenp;th to

,Jidth ratios above, say s ten if the effects of t 11C ends hecome ne?,lip,ible

as the ~late langth increases.

All analY'3is and terminology are derived from Dot'Tell U!-l, 'hose

major. sources were Bolotin [1] and Librescu [6]. ~u3undji [5] has inves­

tigated the linear case.
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Consider a thin plate> ninned at both side edges a':1d very lonr-,

subjected to a lenr:th'\dse air floH over the ton surface (Fi::,. 1).

Linear j1late deflection theory predicts that, above a certain air flm]

velocity. any disturbance of the iJlate ,-rill become an eXDonentially

erowing oscillation. Finite ~late analysis usinf, Von ~~armau's nonlinear

deflection equations shows that disturbances reach a steady state and

the plate oscillates (flutters) indefinitely. Linear treatment of the

aerodynamic forces is satisfactory for ;lach numbers between 1.5 and 5.

Finite plate analysis usin0 Von Karman's plate deflection equations and

piston theory (linear) aerodynamics has nroduced satisfactory agreement

uith experimental data (Dowell [2]).

o



-3-

III. LINEAR ANALYSIS

Linear analysis of this problem has been carried out by Dugundji

[5]. Linear analysis predicts the flutter boundary, but describes

all disturbances as decaying or gro~7ing exponentially. A revi~~ of

the linear analysis follmJs.

Consider a simply supported infinitely lone plate of width band

thickness h (Fig. 1). The plate is initially at rest, flat, and unstretched.

An airstream passes over the upper surface. If the plate is eiven an

initial disturbance, three linear effects are important in describing the

motion. TI1ey are: inertial forces, aerodynamic forces, and the plate's

resistance to bendin8' The deflection is described in terms of a travel-

ling \'laVe of the general form

U(x. y, t) = l l cos m'lTy [A (t) cos
b nnm

2'lTX + B (t) i 2'lTx]
Q, n s n -t-
n n

Only the first span~'7ise mode (m = 1) need be retained. For t1:le linear

case none of the modes are coupled, therefore each wavelength Q, may be
n

examined separately. Thus the wave form becomes

u = cos ~ [A cos 2? + B sin 2i]

The equation f,overning the motion is

a\r 4
P h --' = Nil F .• (0-0 )

m' at2 .~, ." co

Using piston theory aerodynamics the aerodynamic forces are [2]

(1)

(2)

(3)

Solution is by Galerkin's me6od. The deflection T.T is substituted

from (1) into equation (2). The resulting equation is multiplied by
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each of the mode shapes, cos (ny/b) cos (2nx/l) and cos (ny/b) sin (2nx/1).

The tl-1O equations are then integrated over the panel width and n wave-

lengths producing the non-dinensionalized results below:

2 2a a1 b n:iJ
aa1 n4(4 !L + 1)801

--= -2n - A.b - --
aT

2 R- 1 01' 1/,2

a2
b

b
aa1 n4 (4 b21 IfiJ l)b1

(4)--= 2'11' T A.al - --- -+
a.2 OT 1/,2

Note (4) is indenendent of n.

iWT iWTIf we assume al = aOe and b l = bOe , then the condition for

neutral stability is that Wbe a pure real number. This condition

predicts a flutter boundary of

(5)

Thus the point at which a plate first flutters is expressed in terms of

a relationship beb~een the aerodynamic loading A and the mass ratio ~.

Flutter occurs at the lowest value of A. for a 'i7ave1ength of t\-lice the

panel ~·7idth, as can be seen by minimizing equation (5) v7i th resnect to

1/,/b and obtaining the critical values.

2
A. = 4n ~cr

(9./b) = 2
cr
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IV. NOr~INEAR A}iALYSIS

The nonlinear equation tmces into account the stresses in the

plate due to its being stretched like a membrane. Membrane stresses

in plates are significant for deflections on the order of one plate

thickness. TIle nonlinear equation is [4].

Hhere tIl is the stress potential function for the plate and obtained from

1]4~ (a21'J) 2 _ ( a2u) (a2H)
Eh = axay ax2 ayZ

If H from equation (1) is substituted into (7)

\\

.. '1

~.

Eh
21T

4
2 2 4 41TX 2 2 21r'

.- -- [(A -B ) cos ~ + ZAB sin -0- + (A +3 -) cos £!!:2. ] (8)
R,2

b
2 R, ~ b

Assuming that the particular solution ~ is of the form
n

41TX + 41TX 21T'7
tI>p = T cos 2 Q sin -2-+ R cos ~

then substituting tIl into equation 7 and equatin~ coefficients
p

Eh 22 2 2
T = - 128" 2" (1:.. -lL)

b

Eh 22
Q = - 84 2" AB

b

He assume for the homogeneous solution ~h the simplest form that will

maintain any value of stress

( 9)
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(10)

By the definition of a stress function the stresses in the plate are

TIle strains in the plate then are

au 1 cr ., ) 1 (aV)2-= L' - -2ax Eh X Y!:'y ax

au 1
(I1 yr'; )

1 (aT1) 2-= - -ay Ell y x 2 ax
(11)

As boundary conditions we ask that there be no net inp1ane stretching

over the \<1idth and n ~'Javelengths:

b nR- b nR.
2 2" "} 2av .:.. au

J f (\ f (\a:- clxdy ::: a dxdy = v (12)x .
b nR. Y b nR.- - - - --2 2 2 2

App1yin3 these conditions

2 2 ~h 2 2
II = (A + B ) _.l!._ (-!-. + .L!!....)

x l_y2 8b2 U2
( 13)

N is assumed to be zero, imp1yinfl no resistance to in-plane .;:;hears. ~·Jote
xy

that these results are indenendent of n.

Equation (6) can nov be expressed in terms of H. Applying Ga1erkin's

method in the same manner as in the linear case, the equations become

(in non-dimensional form):
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2
2a a

1 -21T P- AD -
_ aa

l 1T 4 (4 L + 1)2 ~ (2 1 2)--= IA~ -- a l + c; 4al a l + °1
h

2 £ 1 aT t
2

a
2

b
b

ab
l 4 ,2

1)2bl + E4b
1

(ai + hi)1 1T (4 2- +-;;= 21T - Aa - h;--
£ 1 aT £2

Hhere 4 2 b 4 31T4 2
121T (I-v) £4 - -4- (I-v) (14)

The deflection 'L' = H(x, Y. T; A,~. t/b). L\fumerical solutions Here

obtained by integration of equations (14) on a digital computer.
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V. SOLUTIONS t~~D ~ESULTS

Numerical integration of equation (14) produces a traveling wave

form (Fig. 2). If the deflection is assumed to be a traveling wave,

the limit cycle amplitude and frequency can be predicted analytically.

He assume a time history of the form a1 = aa cos WT and hI = hI) sin WT.

Substitutinp; into <i4) and aeain applying Galerldn's method by multi!.'ly-

ing the equations by cos WT and sin WT and inteeratine over a period,

we obtain four equations in three unkno~ms w, a
O

' and he). ~IOt'lever two

pairs of equations are symmetrical in aO and bOo

get two equations in Wo and w. These reduce to

If a(\ = bn = wn ' ~.:re
'-' -- )

w .. (15a)

(15b)

Using (12). vla may be urltten

NumeFical Solution

h'J.J4 .
(16)

Equations (l/~ were step t,'Yise inte~rated under IB~··r 360 Fortran IV.

One hundred steps per cycle of oscillation p,enerally gave satisfactory

accuracy. The limit cycle ~1as usually reached in under one minute of

computation. Longer times were necessary for low values of ~ or A/~.

The analytic solution ~redicted the limit cycles obtained numerically

well within the accuracy of the numerical data. Figure 3 sho~]s the peak
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of the oscillations approachinp, the theoretical asymptote with time.

For practical applications ll'S bet~'1een .1 and .01 are of interest.

vfui1e numerical results for II = .1 and II = 1. corresponded exactly,

numerical results for II = .01 and II = .001 fell consistantly 5% and 15%

short of the analytically predicted amplitudes. Thus for mass ratios

be10H .01, the analytical formulae do not produce good results. However,

computation times for II = .J01 are almost impossibly long so the analy­

tical prediction may still be the most desirable method.

Disc~~sion of Results

The results of the above analysis are presented in a series of graphs.

The dependence of the limit cycle deflection ~'10 on t~e c~osen t/b

is presented in figure 4. ;:Iotice the symmetry about t/b = 2. t/b = 2

is the critical point as 'Has shmm previously, but the maxima are not

sharp. Figure 5 illustrates the de~endences of the limit cycle amplitude

upon a linear relationship beb7een A and ll(AIll = constant). An t/b of

t~.;o 'Vlas used for all points, as sugges ted by fir;ure 4.

The de~endence of the limit cycle amplitude on AIll is also expressed

in figure 6. The solid curve coincides ~'lith the curve obtained analyti­

cally. The dashed curve is tile numerical result for a II of .01 and

illustrates that the analytical approximation just befins to break down

for this small ll. Figure 7 has been included to illustrate the depen­

dence of ~-70 on A for a finite plate. The limit cycle is relatively

independent of ll~ the dependence is on A and not on Alll,as for an infinite

plate. The present results sur,gest t 11at for lare:er length to uidth ratio

plates II will become as imnortant as A.
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~o~~rison with Finite Length ~ate

It can be immediately seen frum equation' (16) that deflections

of infinitely long plates depend on the ratio A/~ and not on A or

~ independently. Notice that the aerodynamic dependence is on velocity

2(U ) rather than on dynamic pressure q. This functional relationship

is in direct contrast with results obtained by Dowell [4] for finite

plates. Limit cycle amplitudes for finite plates depend strongly on A

(corresponding to q) and only weakly on~. However there is some indica-

tion that ~ becomes more important as the length to width ratio increases.

For infinitely long !?lates, an 1/b of exactly tHO produces the greatest

deflection for a given A/~. This result can be proven by differentiating

equation (16) Nith respect to 1/b. 1/b = 2 is the critical point. This

result suggests that in the limiting case of long finite plates the

flutter amplitude will no longer depend on the plate lenf,th.
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VI. DISCUSSIon OF AERODYNAlUCS

The assumptions made to justify piston theory aerodynamics Here

reconsidered in light of the above results. Dowell [7] had previously

compared piston theory and higher order aerodynamics for the linear

study of infinitely long plates. Linear theory was valid for high

supersonic mach numbers.

In most uses, piston theory is valid Hhenever ~12 »1. HOT;lever,

for a traveling '-lave the relevant 1Jarameter is the relative mach number

l-I = (U - c)!a, where c is the wave speed. Thus for traveling Haves the
r

condition is 1/(1 - c!U)2 »1. DOV7ell's ~'70rl: revealed 6at at the

flutter boundary 1 - c!U = O. Nevertheless he discovered that for large

11 the piston theory was still an acceptable approximation of the more

exact results.

In our case numerical data and analytical results both predicted

that 1 - c!U = 0 throughout the nonlinear flutter ranee. (See figure 8~

the analytical and numerical approaclles agreed with the same degree of

accuracy in predicting frequencies as they did in predicting deflection.)

The result can be demonstrated analytically:

By definition

c Q
I = 21T

't-7here Q is the dimensional frequency. Our analytical solution for the

flutter frequency gave

J/, J"Iwf = 21T b
II

Hhere
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Combining the above equations, one may show that

~
1 - -- = 0U

Thus the piston theory is neither more nor less applicable for nonlinear

flutter regime that it ~~as on the flutter boundary.

~fuile this result suggests that the present analysis is accurate

only for ve~J high supersonic mach numbers, the results may have

significance beyond their theoretically limited range. The motivation

for infinite plate analysis is the desire for comparison with long

finite plate approaches. For comparison both cases should employ the

same aerodynamic theory. Piston theo~J aerodynamics is valid down to

mach numbers of t~~o for finite plates, therefore such aerodynamics are

of interest down to mach numbers near two for infinite plates.
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VII. I:I-PLAim LOADIHG

Consideration was also given to a plate with initial in-plane

loading both from the ends at infinity and from the sides. Timoshenko

[6] has developed the static buckling modes and loads for such a simply

supported plate. Compression from the ends at infinity results in a

buckling into lengthwise uaves of uavelength 2b and a half-t1ave in the

spanwise direction. Compression from the sides results in buckling

into a half-wave in the spanwise direction with no lengthwise height

variations (infinite TJ7avelength 1).

First consideration ~'7as given to com;:>ressions from the ends at

infinity.

-T(a)stress 1'4 ~
X

The compression enters into ~ of equation (6) as an adrlitive

4 4 2 _ 2 () 2.... = T co~ ~ + Q . ..2r.?£ + ? 21Ty + N Y + J-1 ~ + Hay
~ -!/., s~n!/., .' cos b -'x 2 y 2 x 2

Solution proceeds exactly as before and a term R = W(a)b2/D appears
x x

in equations (14), viz.

b aa1 2 b2 2 2 2 2 b2
21T T Aal - I);ll--a:; - 1T (4 ~ + 1) + E4b l (a1+bl)-P'xb141T ~

(17 )

If we assume a1 = aO cos WT and hI = bO sin WT as before, we o~tain

an analytic solution for H O• Equation (lSa) W is not altered by the

addition of in-plane stresses. Wo becomes
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Thus the effect of:P. is very similar to that of 'A/ll' Numericalx

solutions of equations (17) once again bear out the validity of

the assumed time dependence and reveal a series of shifted Wo vs. 'A/ll

curves for various R '8 (see figure 9). Once again there is some
x

deviation at lower ll'S. There is no change in the behavior near the

2Euler buckling load r. = -4n. However as A ap~roaches zero. the fre­
x

quency of the oscillation slows and the deflections approach the static

position. The oscillation continues to "pop through" from one static

position to the mirror image position. There is no detectable tendency

to superimpose small oscillations on a single static equilibrium position.

Both the unloaded flutter phenomenon and the Euler buckling phenom-

enon have their maxima at ~/b = 2. By differentiation of equation (15)

we can prove that the combined case also has a critical ~/b of 2.

The case is not quite so simple for compression from tne sides. If

sideloads are applied to an infinitely long plate. buckling takes the

form of a curved surface ,71th no variation of deflection in the lengthwise

direction. TI1is means a deflection with an infinite ~/b. But for the

unstressed case the ~/b for maximum deflection at flutter is 2. Analysis

analogous to the procedure outlined for Il(a) produces a deflection
x

2 ~2, 4 b2 2 1/2
[(4n --~ ~ - n (4 --+ 1) - R

x
. n )/E

4
]

Wo = ~2 II ~2

Solving for the critical point

R L/n2+(R2L2/n4+ZJLv+J2LZ/16+(R /n2+1)16v2+R JLv/n2 )1/2 -1/2
(!) = [ x x x x ]
b critical l6v + JL

J = .!t..l.
2 II

n
(20)
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The plot of deflection VB t/b for constant R and A/~ (Figure 10)x

demonstrates the nature of this critical value. The maxima is less

definite than the maximas at £/b c 2 were (Fig. 4). Indeed any ~/b

greater dIan the critical ~/b produces deflections very near the

maximum value.

The critical value of ~/b is greater than ~~o for R negative (com-

Note that

t~en R is so
y

negative that there is no flutter but only buck1ing~ ~/b is infinite.

pression) and less than two for R positive (see Figure 11).y .

equation (20) applies only u~ to the flutter boundary.

The deflection Wo is plotted against A/~ in Figure 12. Ibe ~/b for

maximum flutter was used to obtain Wo at each point. Unlike the unstressed

case (Figures 5 and 6) or the end-loaded case (Fig. 9) the critical values

of ~/b are not a constant.
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VIII. ~·lULTI-110DE SOLUTIOn

For nonlinear oscillations, disturbances need not take the form

of a single wavelength. In order to examine this possibility a deflec-

tion composed of several wavelengths

w= cos !Y [l A (t) cos 2~x + B (t) sin 2~x]
b n 1 n 1n n n

can be substituted in place of the single mode deflection shape employed

above. Performing the operations as before we find that each mode is

generally coupled with all other modes. For example, the mode associated

with lIb = 2 interacts with the wave associated with lIb = 7.l5! It

should be noted that the limits of integration n~/2 must go to infinity

so that there will be no residual terms due to conditions at the ends

of the plate.

Analysis in terms of more than one mode can proceed more simply

however on the assumption that only the first (l/b = 2) mode is initially

disturbed. lJhile this is admittedly a special case, it is relevant to

finite plates ",here the spectrum of possible ~'1avelengths is limited to

submultiples of the plate length. Only terms like

nl/2
f AiAjAk cos aix cos 0jX cos akx cos a x dx
-nt/2 m

thcontribute to the m mode equation of motion. Examination of this

cosine product reveals that the integral is zero unless a can be obtained
m

from a sum or difference of ai' a
j

, and ak • We shall consider the case
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where only the mode associated ~lith an a = al is excited initially.

Since only Al is non-zero, only the term with i = j = k = 1 is non-zero.

Thus the only other mode excited is am = ai + a
j

+ ak = 3al • By sums

and differences these two modes interact to excite the modes associated

with Sal' 7al , 9al , and so on. This means that if one wavelenGth is

excited only a discrete spectrum of shorter wavelengths are of interest.

i.e., those which are odd integer multiples of the basic wave number.

The details of the analysis are given in the appendix.

Discussion of Results

The multi-mode solution was undertaken for two reasons. First as

a checlc on the accuracy of a single mode solution. And second, in order

to indicate which modes would be important to include in a finite plate

analysis.

The equations of motion for coupled modes (see appendix for deriva-

tion) were integrated on a digital computer. In order to brine comoutation

times within the available time limits (on the order of S minutes per

run), several sacrifices in accuracy Here made. Rather than use one

hundred steps per cycle, about seventy points per cycle were computed

(based on shortest period mode). Furthermore, limit cycles Nere not

approached so closely as had been the case for the single mode solution.

lJumerical runs were made by exci tine- the first (9.,/b = 2) mode and

examining the limit cycle composed of the first mode and one or two

subharmonics (see figure 13).

Limit cycles were within 10% of the limit cycles achieved for the

single mode case. This is ~'7ithin the error of the multi-mode data. I-Je
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can thus conclude that the sin8le mode solution is fairly well con-

verged for moderate A/~.

Hodes in the stable region ha-"e a very small effect on the oscil-

lations. The amplitude of the stable mode tended to be no more than

2% of the amplitude of the unstable mode. The addition of a third stable

mode to two unstable modes produced no detectable change in the motion

at all.

Higher order modes in the unstable reRion had a detectable but

distinctly secondary effect. For a "A/1l of 200 t the addition of a second

(9../b = .667) mode reduced the limit cycle amplitude slightly. The second

mode's amplitude was never above 3% of the limit cycle amplitude.

The choice of 9../b = 2 is justified only for checl~ing the convergence

of a single mode infinitely long plate solution. In order to explore

behavior similar to the action of long finite plates» an unstable tlb of

six was used as the first mode (see Figure 13). It was found that the

second (9../b = 2) mode still dominated the phenomena and that the impor-

tance of the longer wavelength was less than the importance of shorter

~Javelengths. TI1is justified the use of 9../b = 2 as the first mode for

most comparisons.

In order to explore behavior comparable to a lonE plate which is

t
able to permit 9../b = 2 t a run 1ilas made ~.,ith two 9../b's symmetrically

arranged around 9../b = 2 (see Figure 13). The limit cycle was about two-

thirds of that for 9../b = 2, indicating greater stiffness for the off

modes. The mode associated with the longer wavelength tended to dominate

the phenomena. The shorter wavelength mode was about 10% of the limit

cycle amplitude. For equally unstable modes the system seems to prefer

the lower frequency mode. But more work must be done before any conclusions

can be reached.
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llost runs were made at ~ = .1. However one run was made at ~ = I.,

and the results were essentially the same. The agreement of ~ = .1 and

~ = 1. indicates that the same A/~ relationship holds for the multi-mode

solution as did for the single mode solution.
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IX. COHCLUSlOi--r

The flutter of an infinitely lone plate can be described analyti­

cally by assuming the deflections take the form of a traveling wave.

Limit cycles are a function of A/~ and ~/b, with the greatest deflections

occurring at an ~/b of 2. A single mode is usually satisfacto~! for

describing the motion. rne effect of secondary modes is es~ecially small

if the secondary modes are stable.
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